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Fig. 1.Chemical structure of patulin 
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Patulin is a common contaminant of many food products which are part of humans or animals daily nutrition: fruits and fruit 

products, cereals, diary products and sausages. In the present study, adult zebrafish were divided in 2 groups: Control and 

patulin-treated group which was exposed to patulin (70 µg/L) for 7 days. Histological alterations of the control and patulin-

treated group were examined and compared, with emphasis on liver, kidney, pancreas, intestine, brain and myocardium. 

While the Control group had no histological alterations, the patulin-exposed zebrafish show severe hepatocyte alteration, 

medium to severe degeneration of urinary epithelium, enterocytes hyalinosis, partial coagulation necrosis of the Langerhans 

islets and myocardial edema. 
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Patulin (4-hydroxy-4H-furo[3,2c]pyran-2[6H]-one) is produced by over 60 species of fungi, the most important being 

Penicillium expansum, P. patulum, P. crustosum, P. roqueforti, P. claviforme, Aspergillus giganteus, A. terreus, A. 

clavatus, Saccharomyces vesicarium, Alternaria alternata, Byssochlamys nivea, B. fulva  [1]. 

This mycotoxin contaminates many food products which are part of humans or animals daily nutrition: fruits, fruit 

juices, jams, seeds, alcoholic drinks, cereals and pastry products, diary products and sausages [1]. Patulin concentration in 

apple juices from the Romanian market ranged between 0.7 – 101.9 µg/l, 6% of the analysed samples exceeding the 50 

µg/l maximum limit set by the European Comission [2]. 

This mycotoxin alterates intestinal mucosa barrier [3], has toxic effects on the colon [4] and jejunal mucosa [5]. Patulin 

administration elevates hepatic enzymes, leads to hepatocytes vacuolation, cell necrosis, pyknosis, karyomegaly or 

nuclear degeneration [6] and fatty degeneration [7].  

Literature highlights the effects on excretory system of Danio rerio embryos: slight morphological alterations of 

glomeruli and pronephric tubules and a reduction in glomerular filtration rate [8].  

Mammals were affected by inflammation and degeneration of the Bowman capsule, glomeruli and nephron tubules [7]. 

Patulin also induced erythrocyte apoptosis [9], renal cells apoptosis [10] and oxidative damage in the brain [11]. Patulin 

inhibited the activity of some antioxidant enzymes (CAT, GPX) while increasing the level of reactive oxygen species 

(MDA) [12]. 

While most histological tests (involving mycotoxins) have been conducted on zebrafish embryos, this study aims to 

evaluate the histological effects of patulin exposure (70 µg/L) on the internal organs of adult zebrafish (Danio rerio). The 

treatment dose exceeds the maximum limit set by the European Comission. 

 

Experimental part 

Chemicals 

Patulin was obtained from Romer Labs Diagnostic GmbH (Tulln, Austria). 

Animals and experimental design 

Adult zebrafish (Danio rerio) were kept in aquariums for 7 days to accommodate to laboratory conditions. After this 

period, the animals were divided in 2 groups: Control and Patulin group (70 µg/L). Patulin was administered daily, by 

immersion, for 7 days. 
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Fig. 2. Severe hepatocyte alteration. Swollen 

hepatocytes with vacuolated cytoplasm and 

hyperhydrated nucleus. Triglyceride loading is 

also present. Liver. Masson’s trichrome stain 

 

Fig. 3. Hydropic and lipidic dystrophy of 

hepatocytes. Hyperhydrated cytoplasm and 

nucleus. Cytoplasmic lipid accumulation. 

Liver. Masson’s trichrome stain 

 

Histological examination 

For the histological examination, immediately after euthanasia, the fish were fixed in formaldehyde solution 10% for 

48 hours. Afther that, for demineralization, the fish were immersed in Bouin solution for 24 hours. For the sectioning, the 

fish were fully embedded in paraffin, using histologic processor Leica TP 1020. Starting from the median axis, 5 µm thick 

histological sections were made longitudinally. Masson’s trichromic stain (hematoxylin – eosin – methylene blue) was 

used. Histological examination was made under a light microscope Leica DM 750, the images being captured with a Leica 

HD 5 megapixels digital camera. Histological alterations of the control and patulin-treated group were examined and 

compared, with emphasis on liver, kidney, pancreas, intestine, brain and myocardium. 

 

Results and discussions 

After examining the zebrafish from the Control group, we observed there were no histological alterations of the liver, 

kidney, intestine, pancreas or myocardium. 

Patulin exhibits toxic effects on zebrafish liver. The histological examinations reveal severe hepatocyte alteration with 

toxic etiology (Fig. 2). The hepatocytes are swollen, with vacuolated cytoplasm and hyperhydrated nucleus. Triglyceride 

loading (empty intracytoplasmic vacuoles) is also present.  

The vacuolation of the hepatocytes after patulin exposure is confirmed by a study on rats [6]. Vacuolization leads to 

the dysfunction of macropinocytosis, endocytosis, and autophagy but is not the cause of cell death [13]. Vacuolization is 

considered a side effect of cytotoxic factors and a mechanism that can reduce stress and increase the cell survival potential 

[13]. 

                                                                                                                                                            
 

 

 

 

 

 

 

In the liver of patulin-treated zebrafish, we also observed the loss of 

hepatocyte integrity due to broken cell membranes and disorganization of the cytoplasm.  Hepatocyte damage and loss of 

cell outline has also been observed in  mice, after 2 weeks of patulin treatment [14]. 

The hepatocytes of the Patulin-treated group showed hydropic and lipid dystrophy (Fig. 3). Some cells have 

hyperhydrated cytoplasm and nucleus, in other cells there is a cytoplasmic lipid accumulation. Also, in the case of mice, 

patulin exposure led to fatty degeneration [7]. After one week of patulin exposure, there is a difference between mice 

hepatocytes, which had granular cytoplasm [14], and the hyperhydration observed in zebrafish hepatocytes. 

In the liver of patulin-treated zebrafish there were no signs of hepatocyte necrosis, sinusoids dilation/irregularities, 

nuclear abnormalities as in the case of patulin-treated mice [7] or rats [6]. 

Lymphocyte infiltration in the liver of patulin-exposed rats and mice [15] was absent in patulin-treated zebrafish. 

Nephrotoxic effects are characterized by medium to severe degeneration of urinary epithelium, nephrocytes swelling, 

cytoplasm vacuolation and nuclear hyperhydration (Fig. 4). Some nephrocytes lose integrity by detachement from the 

basement membrane of the urinary tubule. In contrast with a study on mice [10], renal cells apoptosis was not present. 

Patulin leads to degenerative processes of the mice nephron tubules, Bowman capsule and glomeruli [7]. The 

morphological alterations of the glomeruli and pronephric tubules shown in the case of patulin-exposed zebrafish embryos 

[8] sustain the similarity between the effects on zebrafish and rodents. 

The morphological alterations of the glomeruli is followed by a reduction of the filtration rate [8], thus we can make 

the assumption that glomeruli degeneration also alters the filtration rate. 
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Fig. 4. Medium to severe degeneration of urinary 

epithelium: nephrocytes swelling, cytoplasm 

vacuolation, nuclear hyperhydration, nephrocytes 

detachement from the basement membrane. 

Interstitial capillaries congestion, monocyte 

infiltration of the urinary epithelium. Kidney. 

Masson’s trichrome stain 

 

Fig. 5. Smooth hyaline casts in the 

nephrocytes cytoplasm indicate tubular 

epithelium hyalinosis. Kidney. Masson’s 

trichrome stain 

 

Fig. 6. Tubular hyalinosis. Kidney. 

Masson’s trichrome stain 

 

Fig. 7. Enterocytes hyalinosis – vitreous 

casts in the cytoplasm. Intestine. Masson’s 

trichrome stain 

[Cite your source here.] 

Interstitial capillaries of the patulin-treated zebrafish are overloaded with erythrocytes, thus leading to a medium 

congestion, while kidney of the patulin treated mammals showed capillary lesions [16-18]. Also, a more recent study 

states that patulin exposure leads to hemorrhagic lesions of the mice kidney [7]. 

Marine fish (D. labrax) also showed congestion of the kidneys after exposure to a wide-spread mycotoxin - Ochratoxin 

A ((2S)-2-[[(3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-3,4-dihydroisochromene-7-carbonyl]amino]-3-phenylpropanoic 

acid) [19, 20]. 

In patulin-treated group kidneys, there is an inflammatory component represented by monocyte infiltration of the 

urinary epithelium, while in patulin-treated rats there was a lymphocyte infiltration [15].  The inflammatory cell 

infiltration is also present in the kidney of mice exposed to patulin [7]. 

 

                                                       
 

 

 

 

 

 

 

 

 

In the nephrocytes, it is observed the presence of large, perfectly spherical, vitreous casts with homogenous structure, 

appearing acidophilic in Masson’s trichrome stain (Fig. 5). The breaking of the apical pole of the cells is followed by the 

formation of hyaline casts in the renal tubule lumen. The presence of increased numbers of hyaline casts can lead to 

kidney failure. 

Our results are in line with a study on rats and mice [15], which showed that the urine of the patulin-treated rats 

contained granular and hyaline casts. 

Hyalinosis of the tubular epithelium (Fig. 5 and Fig. 6) does not imply a nephrocyte lesion. The cause is an active 

pinocytosis of the proteins (from the filtered primary urine) in all pathological conditions which imply severe proteinuria 

or nephrotic syndrome. Normally, protein absorption is followed by formation of heterophagolysosomes and protein 

degradation to aminoacids which are returned to blood flow. The accumulation of hyaline globules indicates the saturation 

of the physiological mechanism. 
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Fig. 8. Partial coagulation necrosis of 

the endocrine pancreas (Langerhans 

islets). Pancreas. Masson’s trichrome 

stain 

 

Fig. 9. Myocardial edema: clear 

interfibrillar spaces, swollen 

myocardiocytes and hyperhydrated 

sarcoplasm. Myocardium – cross 

section. Masson’s trichrome stain 

 

[Cite your source here.] 

Enterocytes hyalinosis (Fig. 7) – vitreous casts in the cytoplasm imply a transcellular transport deficiency (from the 

enterocyte brush border to basal pole of the cell) of the nutrients from the intestinal content. This can lead to 

malabsorption syndrome.  

Malabsorption due to patulin exposure is in line with previous studies on rodents and swines. In rodents, patulin 

impairs the intestinal absorption due to its toxic effects on gastro-intestinal mucosa: ulcerations, hemorrhagic lesions, 

cellular pyknosis, necrosis, eosinophils agglomeration  [15] and inflammatory processes [21]. The effects of patulin on 

swine intestine (decrease in density of the goblet cell, intestinal villi and crypts) [5] can also lead to malabsorption. 

The endocrine pancreas of the patulin-treated zebrafish is affected by partial coagulation necrosis of Langerhans islets 

(Fig. 8). This will alter the production of pancreatic endocrine hormones (insulin, glucagon, somatostatin) and fish 

metabolism. 

Literature states that other mycotoxin, ochratoxin A, leads to tissue damage of the fish (O. niloticus) pancreatic islets 

[22]. 

Patulin-treated group had no signs of exocrine pancreas alterations, as is the case of I. punctatus fed with ochratoxin A 

[23]. Pancreatic inflammation shown in O. niloticus  fed with aflatoxin B1 ((3S,7R)-11-methoxy-6,8,19-

trioxapentacyclo[10.7.0.02,9.03,7.013,17]nonadeca-1,4,9,11,13(17)-pentaene-16,18-dione) [24], has not been observed in 

patulin-treated zebrafish. 

 

 

                                                     
 
 
 

 

 

 

 

 

Patulin-treated fish showed myocardial edema marked by clear interfibrillar spaces, swollen myocardiocytes and 

hyperhydrated sarcoplasm (Fig. 9). These effects can lead to a decrease of the heartbeat rate.  

Patulin cardiotoxicity is sustained by a study on mice [25], which showed that patulin induced oxidative stress and cell 

apoptosis. These effects can also lead to alterations of cardiac functions. 

Other studies demonstrate the cardiotoxic effects of several mycotoxins on the structure and function of zebrafish 

embryos heart: pericardial edema [26-29], decrease in heartbeat rate [28, 29], diminished size of heart chambers and 

stacking up of cardiomyocytes [30]. 

 

Conclusions 

The patulin-treated group shows histological alterations of the liver, kidney, intestine, pancreas and myocardium. 

In the liver of patulin-treated zebrafish, the histological alterations are represented by swollen hepatocytes, vacuolated 

cytoplasm, hyperhydrated nucleus and triglyceride loading. There can also be observed a loss of cell integrity in 

hepatocytes due to broken cell membranes. 

In the kidney of treated group it has been shown the presence of tubular epithelium hyalinosis, indicating the saturation 

of the physiological mechanism. The medium to severe degeneration of urinary epithelium is characterized by 

nephrocytes swelling, loss of integrity, cytoplasm vacuolation, nuclear hyperhydration, interstitial capillaries congestion 

and monocyte infiltration. 

In the intestine of patulin-exposed fish it has been shown the presence of enterocytes hyalinosis. This implies a 

transcellular transport deficiency of the nutrients from the intestinal content. 

The pancreas of the patulin-treated group showed partial necrosis of the endocrine pancreas (Langerhans islets). 
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The treated group showed myocardial edema, swollen myocardiocytes and hyperhydrated sarcoplasm. This 

histological alterations can decrease heartbeat rate. 
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